Paul-Ehrlich-Institut

Hinweis zur Verwendung von Cookies

Zur Bereitstellung und Optimierung unseres Webauftritts möchten wir gerne statistische Informationen vollständig anonymisiert erfassen und analysieren. Dürfen wir hierzu vorübergehend einen Statistik-Cookie setzen?

Sie können Ihre Einwilligung jederzeit in unserer Datenschutzerklärung widerrufen.

OK

Mit Kombination aus Genomik und Proteomik auf dem Weg zu neuen antiviralen Medikamenten

20 / 2015

Es sind hauptsächlich die Influenza-A-Viren, die jedes Jahr weltweit die saisonale Grippewelle auslösen. Gegen die derzeit verfügbaren antiviralen Medikamente sind sie häufig resistent. Wissenschaftlern des Paul-Ehrlich-Instituts ist es im Rahmen einer internationalen Forschungskooperation gelungen, eine neue Zielstruktur für die zukünftige Entwicklung antiviraler Medikamente auszumachen. Über die Forschungsergebnisse berichtet Cell Host Microbe in seiner Online-Ausgabe vom 9. Dezember 2015.

Jährlich erkranken in Deutschland zwischen zwei und zehn Millionen Menschen an der Virusgrippe, die durch Influenzaviren verursacht wird. Es werden Influenza-A-, -B- und C-Viren und ihre verschiedenen Subtypen unterschieden. Influenza-A-Viren machen häufig den Großteil der weltweit zirkulierenden Grippeviren aus. Influenzaviren können sich schnell genetisch verändern, daher werden die Grippeimpfstoffe jedes Jahr an die zirkulierenden Grippeviren angepasst. Darüber hinaus werden Medikamente gegen Influenzaviren, sogenannte antivirale Medikamente, benötigt, um infizierte Personen zu behandeln sowie eine Behandlungsoption bei neu auftretenden (Grippe-)Viren zu besitzen – insbesondere bei einer Pandemie. Inzwischen sind viele Influenza-A-Viren allerdings gegen die derzeit verfügbaren antiviralen Medikamente resistent.

Ein Ansatz auf dem Weg zu neuen wirksamen Medikamenten gegen Viren ist der Angriff auf die Interaktion zwischen dem Virus und seinem Wirt – den befallenen Zellen der infizierten Menschen, denn Viren nutzen für ihre Vermehrung und Verbreitung Zellproteine (Eiweiße) des Menschen. Über eine Blockade der Interaktion des Virus- mit den Zellproteinen könnte die Virusvermehrung ausgebremst und dadurch die Virus­grippe erfolgreich therapiert werden.

Dass die genauen Prozesse der Interaktion des Influenza-A-Virus mit den menschlichen Zellen bisher nicht vollständig aufgeklärt sind, liegt u.a. daran, dass zwar weltweit umfangreiches Datenmaterial generiert wurde, dieses aber scheinbar unterschiedlich bewertet wurde. Vier internationale Arbeitsgruppen – darunter Wissenschaftler um Dr. Renate König, Leiterin der Forschungsgruppe "Zelluläre Aspekte von Pathogen-Wirt-Interaktionen" des Paul-Ehrlich-Instituts – ist es in einem gemeinsamen Groß­projekt durch Kombination aufwendiger genomischer (die Gene betreffend) sowie proteomischer (die Proteine betreffend) Datenanalysen gelungen, eine Art bio­chemische Landkarte essenzieller Influenza-A-Virus/Wirt-Interaktionen zu erstellen.

Mit Influenza-A-Virus infizierte humane Lungenkarzinomzellen (Zellkern in blau). Die viralen Proteine Hämagglutinin (grün) und Matrixprotein 2 (rot) befinden sich hauptsächlich an der Plasmamembran. Mit Influenza-A-Virus infizierte humane Lungenkarzinomzellen (Zellkern in blau). Die viralen Proteine Hämagglutinin (grün) und Matrix­protein 2 (rot) befinden sich haupt­sächlich an der Plasmamembran. Quelle: Zentrum für Mikroskopie und Bildanalyse, Universität Zürich

Mit dieser "Landkarte" konnten die Wissen­schaftler mit UBR4 (Ubiquitin protein ligase E3 component n-recognin 4) ein Protein in menschlichen Zellen identifizieren, das für das "Budding", das Abschnüren der Viren von der Zellmembran, den Austritt des Erregers aus der Zelle und die Verbreitung in und außerhalb des Körpers erforderlich ist. Die Wissen­schaftler mutmaßen, dass UBR4 vom Virus "ausgeliehen" wird, um mit dessen enzymatischer Funktion einen im Detail noch nicht bekannten Schutzmechanismus des Menschen auszuschalten, bei dem virale Proteine degradiert werden und damit der Transport von viralem Protein zur Zell­membran unterbunden wird. Das Influenza-A-Virus erkauft sich gemäß dieses Modells durch UBR4 eine sichere Passage zur Zell­membran. Diesen Schutzmechanismus zu verstärken, könnte ein Ansatzpunkt für die Entwicklung neuer Arzneimittel gegen das Influenza-A-Virus sein.

"Ein Vorteil von Wirkstoffen, die auf zelluläre (menschliche) Proteine einwirken, die für das Virus essenziell sind, ist die Tatsache, dass sich das Genom des Menschen nicht ständig verändert, sodass Wirkstoffe auch langfristig eine Wirksamkeit zeigen dürften", erläutert König. Ein weiterer Vorteil: Medikamente mit zellulären Proteinen als Zielstrukturen sind möglicherweise gegen ganz unterschiedliche Viren wirksam, die sich des gleichen Proteinapparates des Menschen bedienen. Natürlich dürfen dabei essenzielle Zellfunktionen nicht gestört werden. Und schließlich besitzen zelluläre Proteine als Zielstrukturen das Potenzial, zur Verstärkung der Wirksamkeit von Impfstoffen genutzt zu werden.

Originalpublikation

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R, Stertz S, Garcia-Sastre A, Chanda SK (2015): Meta- and Orthogonal Integration of Influenza 'OMICs' Data Defines a Role for UBR4 in Virus Budding.
Cell Host Microbe 18: 723-735.
Online-Abstract

Pressekontakt:
Paul-Ehrlich-Institut
Pressestelle
Dr. Susanne Stöcker, Dr. Corinna Volz-Zang, Brigitte Morgenroth
Paul-Ehrlich-Straße 51-59
63225 Langen
GERMANY
Telefon: +49 6103 77 1030
Telefax: +49 6103 77 1262
E-Mail: Presse@pei.de

Das Paul-Ehrlich-Institut in Langen bei Frankfurt am Main ist als Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel eine Bundesoberbehörde im Geschäfts­bereich des Bundesministeriums für Gesundheit (BMG). Es erforscht, bewertet und lässt bio­medizinische Human-Arzneimittel und immunologische Tierarzneimittel zu und ist für die Genehmigung klinischer Prüfungen sowie die Pharmakovigilanz – Erfassung und Bewertung möglicher Nebenwirkungen – zuständig.

Die staatliche Chargenprüfung, wissenschaftliche Beratung/Scientific Advice und Inspektionen gehören zu den weiteren Aufgaben des Instituts. Unverzichtbare Basis für die vielseitigen Aufgaben ist die eigene experimentelle Forschung auf dem Gebiet der Biomedizin und der Lebenswissenschaften.

Das Paul-Ehrlich-Institut mit seinen rund 800 Mitarbeiterinnen und Mitarbeitern nimmt zudem Beratungsfunktionen im nationalen (Bundesregierung, Länder) und inter­nationalen Umfeld (Weltgesundheitsorganisation, Europäische Arzneimittel­behörde, Europäische Kommission, Europarat und andere) wahr.

Aktualisiert: 10.12.2015