First clinical trial of a COVID-19 vaccine authorised in Germany

Professor Dr Klaus Cichutek, President
Agenda Press Briefing

- Role of the Paul-Ehrlich-Institut in vaccine regulation (Paul-Ehrlich-Institut)
- Basic principles of the authorisation of the clinical trial (Paul-Ehrlich-Institut)
- Study design (BioNTech)
- Outlook (Paul-Ehrlich-Institut)
- Questions
Paul-Ehrlich-Institut protects patients and supports medicines development
Advice from Paul-Ehrlich-Institut accelerates COVID-19-RNA vaccine development

- National scientific advice
 Early, across the entire path of development, uncomplicated

- Guidance to scientific advice from EMA (European Medicines Agency)
 In the late development phase → preparation for marketing authorisation application

- Research at PEI
 Safety and protection of vaccine platforms

- International harmonisation: EMA, WHO, ICMRA, HMA, …

- Advice to political bodies, public relations, …
Authorisation of a Phase 1/2 Clinical Trial in Germany
Prerequisites

- Selection of a vaccine platform
 - Different RNA technologies
 - Clinical experience with RNA tumour vaccines for treatment are available

- Identification of the pathogen component that confers immune protection
 - From MERS Coronavirus research: Spike protein of SARS-CoV-2
 - Spike protein or component of spike protein becomes antigen (active ingredient in the vaccine)

- Modification the genetic information (plan) for antigen formation
 - RNA of modified spike proteins (pre-fusion conformation)
 - RNA of domain binding to cell receptor (RBD) of the spike protein
Authorisation of a Phase 1/2 Clinical Trial in Germany
Manufacture (GMP), Quality

- Manufacture of the RNA observing the quality assurance requirements
 - Synthesis by *in vitro* transcription with DNA as template
 - Large-scale manufacture (up-scaling) for Phase 1/2

- Formulation of the vaccine and filling
 RNA + LNP (lipid nanoparticles, water-soluble)

- Batch testing at the manufacturer
 - Identity of RNA (correct sequence)
 - Specification: Share of RNA and share of excipients in the vaccine
Authorisation of a Phase 1/2 Clinical Trial in Germany
Preclinical Tests

- Immunogenicity and dose in the animal (mouse) model
 - Creation of an immune response against the spike protein of CoV-2, i.e. RBD
 - Dosage (amount of RNA per dosage)
 - Vaccination regimen (one or two vaccinations, time interval?)

- Toxicology (rat) at repeated vaccine administration (on-going)
 - Platform data
 - Test for organ damage, local tolerability

- Pharmacology and pharmacokinetics (cell culture)
 - Formation of the desired antigen (spike protein i.e. RBD)
Authorisation of a Phase 1/2 Clinical Trial in Germany Clinical Trial

- Aims: Safety, tolerability, immune response
 - Immunogenicity: Creation of an immune response against the spike protein i.e. RBD
 - Dosage (amount of RNA per dose)
 - Vaccine regimen determined (one or two vaccinations (time interval day 1 and 22))

- Pharmacovigilance (safety of the vaccine)
 - General tolerability (fever, headache, malaise, …)
 - Local tolerability (redness of the skin, haematoma; …)

- Pharmacology and pharmacokinetics, immune response
 - Evidence of antibodies
 - Ratio of neutralising to only binding antibodies
 - Balance of immune response (Th1 vs. Th2)

- Around 200 persons, no control arm
Authorisation of a Phase 1/2 Clinical Trial in Germany
Particular features of the clinical trial: Start of Part A

- Healthy adults 18 to 55 years in Parts A and B
- Risk persons in Part B (persons >55 years, healthy or with pre-existing diseases)
- Interim report before authorisation from PEI in the Part B study
- Around 200 persons in Part A, around 500 persons in Part B

- Cytokine profile in the blood
- Neutralising antibody, binding antibody
- No particular risks in the case of RNA vaccines recognisable (ADE and ERD; animal models at WHO level under discussion)

- Additional data on ADE and ERD in animals shall be submitted before Phase 2
On-going clinical trials world-wide Preventive specific CoV-2 vaccines

<table>
<thead>
<tr>
<th>Platform</th>
<th>Type of candidate vaccine</th>
<th>Developer</th>
<th>Coronavirus target</th>
<th>Current stage of clinical evaluation</th>
<th>Same platform for non-Coronavirus candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Adenovirus Type 5 Vector</td>
<td>CanSino Biological Inc./Beijing Institute of Biotechnology, China</td>
<td>COVID-19</td>
<td>Phase 2 ChiCTR2000031781 Phase 1 ChiCTR2000030906</td>
<td>Ebola</td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>Inovio Pharmaceuticals, U.S.A.</td>
<td>COVID-19</td>
<td>Phase 1 NCT04336410</td>
<td>Lassa, Nipah, HIV Filovirus, HPV Cancer indications Zika, Hepatitis B</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA</td>
<td>Moderna/NIAID, U.S.A.</td>
<td>COVID-19</td>
<td>Phase 1 NCT04283461</td>
<td>multiple candidate vaccines</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>chAdenovirus Type 3 Vector</td>
<td>Oxford Univ., UK</td>
<td>COVID-19</td>
<td>Phase 1</td>
<td>Ebola</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA, saRNA</td>
<td>BioNTech, Germany</td>
<td>COVID-19</td>
<td>Phase 1/2</td>
<td>multiple candidate vaccines</td>
</tr>
</tbody>
</table>